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A B S T R A C T  

We study the structure of optimal solutions for a class of constrained, 
second order variational problems on bounded intervals. We show that, 
for intervals of length greater than some positive constant, the optimal 
solutions are bounded in C 1 by a bound independent of the length of 
the interval. Furthermore, for sufficiently large intervals, the 'mass' and 
'energy' of optimal solutions are almost uniformly distributed. 

I n t r o d u c t i o n  

In this  pape r  we invest igate  the s t ruc ture  of op t imal  solut ions of var ia t ional  

p rob lems  assoc ia ted  with a class of funct ionals  of the form 

I] (D;w)  = fD f(w(t) ,w'( t ) ,w"(t))dt ,  Vw �9 W2'I(D), (0.1) 

where  D is a bounded  interval  on the  real line and f E C ( R  3) belongs to a space 

ff)~, to  be descr ibed  below, such tha t  I f (D; . )  is an ex tended  real f lmctional  on 

W 2'1 (D) which may  ob ta in  the  value +cx) bu t  is bounded  from below. Specifical ly 

we shall  s t udy  the problems  

inf{Jl(D; w): w e W2'I(D)} 

and 

(p )o in f{J f (D;w):  w �9 W 2 ' I ( D ) ,  (W)D = a}, 
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where 

(0.2) 
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a l ( D ; w )  = T)silI(D;w), (W>D = i@i f ) w d x .  

We shall also consider the corresponding problems with prescribed boundary 

values for X,. := (w, w'), 

i n f { J l ( D ; w ) :  w E W2'I(D), Xw(T1) = x, Xw(T2) = y}, P = (T1,T~) 

and 

(ps  i n f { J : ( D ; w ) : w  e W2"(D),  Xw(T, )  = x, Xw(T2) = y, <W>D = a}. 

It will be assumed that f satisfies conditions which guarantee that each of the 

above problems possesses a minimizer for every bounded interval D, and we shall 

be interested in the structure of these minimizers for large ]D]. As in [8, 9, 10] 

this study is based on the relation between problems (PD/) and (PD/)~ on large 

intervals and the corresponding limiting problems on R: 

(P:) W2,1 inf{J/(w):  w 6 toe(R) ~ WI'~(R)},  

( P f ) a  

where 

(0.3) JZ(w) = l i m i n f J l ( ( - r , T ) ; w ) ,  
T-*c~ 

Similarly we define 

(0.4) .]I+(w) = l iminf  JI((O,7');w),  
7"-"+00 

W2,1 ~ inf{J/(w):  w E toc (1~) A wl '~176  (w> = a}, 

= lim w (~)+ r_,oo< >(o,TI, 

and the one-sided limiting problems (P+/), (P+/) .  

Note that problem (PD/)~ on an interval D = (0 ,T) i s  equivalent to problem 

{/01 /01 } t 2 It ( p I ) :  inf f ( v ,  e v , e  v ) d s : v e W 2 ' l ( o ,  1), v = a  , 

where e = 1 /T  and v(s) = w(sT) ,  w e W2'I(O,T).  Therefore our study is 

tantamount to the study of a class of s ingular  p e r t u r b a t i o n  p rob lems .  
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The constrained variational problems on bounded intervals were conceived as 

models for determining the thermodynamical equilibrium states of unidimen- 

sional bodies involving 'second order' materials (see 14]). In the special case 

( 0 . 5 )  f ( u ,  n', u") = u ''2 - bT~ '2 + r  

where ~/J is a potential such as ~b(u) = (u 2 - 1)", problem (pI)~ becomes 

inf 5 (c2v"2-be~/2 +~b(v))ds:vE W 2 ' l ( - l , l ) ,  5 v = a  . 
l 1 

We note that for e = 0 this reduces to the Gibbs free energy model, while fl~r 

e > 0 and b := 0, (0.5) reduces to a second order version of tile van der Waals 

model. 

The unconstrained limiting problem (pI)  was studied in [7], [14, 15, 16], [10] 

and [11]. The constrained limiting problem (pI)~ was studied in [4], [8] and 

[9]. The relation between the problems on bounded large intervals and the cor- 

responding limiting problems was first studied in f8] and 191 (for constrained 

problems) and in [10] (for unconstrained problems). Equations related to exam- 

ple (0.5) were studied by many authors. For example, the stationary states of the 

extended Fisher-Kolmogorov equation, namely -',/u ('~) +u" + ( u - u  3) = 0, 7 > O, 
were studied in [12, 13]. For other related studies see [3, 5 i and the references 

mentioned therein. 

We, turn now to the definition of the spaces of integrands considered in the 

present paper. Put  

(0.6) 

= { f  E C ( R 3 ) :  I f ( x l ,X2 ,X3 ) l  ~ oo a.s Ix31 ~ ~ ,  

uniformly with respect to (xl, x2) in compact sets}. 

9.1 will be equipped with the uniformity determined by the base 

E(N,e)  = {(f ,g)  e ~ x 21: (i)]f(x) -g (x ) l  <_ e, if ]x,] _< N, i = 1,2,3, 

If(x)l + 1 
(0.7) ( i i ) l  - e  _< < 1 + e ,  ifixlI,  Ix2 i <_ N 

lg(x)l + 1 - 

VX ---- ( X l , X 2 , X 3 )  r R3}, 

where N and e are positive numbers. It is easy to verify that the uniform space 

is metrizable and complete. 
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The space of integrands 9Jl considered in this paper is a subspace of 9/which 

depends on several parameters, namely ~ = (al, . . .  ,a4) E ]1;{ 4, ai > 0 and 

a, fl, 3' E IR such that 

(0.8) l < / 3 < a ,  f l ~ 7 ,  1 < 7 .  

A function f E 9/ belongs to 92t = 9;rt(a,/3, 7, a) iff it satisfies the following 

properties: 

(0.9) 

(i) f E C2(R3), Of/Ox2 ~ 62(R3), Of/Ox3 E 63(R3), 

(ii) O2 f /Ox~ > O, 

(iii) f(x) > allxll '~ - a2lx21 z + a3lx3l v - a4, 

(iv) (Ifl + IVfl)(x) _< My(lxll + I  1)(1 + Ix31 ), w E R 3, 

where M I : [0, oo) ~-~ [0, oo) is a continuous function depending on f.  The closure 

of 9)I in 9/will be denoted by 93t. 

Assumption (0.9) implies that if f E DI and D is a bounded interval, then 
IS(D; .) is an extended real valued functional on W 2'1 (D) with range ( -oo ,  +oo]. 

For v E W23(D),  If(D;v) < +co if and only if v E W2'7(D). In addition, (0.8) 

and (0.9) imply that this functional is bounded below (see (0.11)). 

Given a function f E ~ and a bounded interval D with IDI = T put 

(0.10) 

/~f = inf(PS), 

#/T = inf(PDS), 

= in f (Ps  ,'y, 

~Y (a) = inf(P f) a, 

~]T(a) = inf(Ps a , 

inf(';)7, 

for every x, y E 1~2 and a E 1~. The functions 7) f, 7@, ~?/T, t2/7 ` are called r e s p o n s e  
func t ions  of the respective problems. Some properties of ~f  are described in 

Proposition 0.1 below. Each of the other functions is continuous in all its variables 

(e.g., /2/T E C(1~4)) and tends to infinity as its argument tends to infinity in 

Euclidean norm (see [8, Lemma 1.3]). 

Conditions (0.8) and (0.9)(iii) imply that there exists a constant b0 such that, 

for every f E 9tit and every T >_ 1, 

T 1 
(0.11) I I (O,T,v)> [ (-aalv"lT+allvl~)dt-boT, VvEW2'7(O,T) 

- J 0  '2  ' ' 

(see [10, Lemma 2.2]). Obviously b0 depends on the parameters defining 89I. This 

coercivity property and conditions (0.8) and (0.9) imply, by standard existence 
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theory, that  each of the problems ( ~  T)), ( (O,T))a' P:  (p f  ~x,y  (p f  ~z,y 
, \ ' ( O , T ) ]  ' ~ (O ,T )J a  

possesses a minimizer for every T > 0, every x, y E R 2 and every a E R. The 

existence of minimizers for the unconstrained problem (Pf)  was established in 

[7]. Moreover, it was shown that  if #f  < inf,2 f(w, O, s) then (P])  possesses a 

periodic minimizer. The restriction on f was later removed in [14]. The existence 

of minimizers for the constrained problems (PI)~ was established in [4]. Some 

additional results of [4] are summed up in the next proposition. 

PROPOSITION 0.1: Assume that f E 9)I. Then: 
(i) The function a ~-~ ~f (a) is finite everywhere and convex on IK 
(ii) Ira is an exposed point with respect to ~f,  i.e. 

(0.12) 3 A e R :  99f(s)>9~l(a)+A(s-a) ,  g s e R \ { a } ,  

then (Pf  )a possesses a periodic minimizer. 
(iii) 9~(a)/[a[ --+ c~ as [a[-+ c~. 

p /  A study of the properties of minimimizers of the constrained problem ( D)a 

on bounded intervals was initiated in [8], [9]. These papers were concerned with 

the relation between the problems on large bounded intervals and the formally 

limiting problem (Pf)a. It was shown that this relation can be employed in order 

to derive properties of minimizers on large intervals on the basis of information 

concerning the limiting problem. These papers dealt with integrands of the 

form (0.5), where r is a potential satisfying certain growth and monotonicity 

conditions at • including the coercivity condition r 2 --+ ~ as ]u[ ~ c~. 
The standard example is provided by the double well potential, r = (u 2 - 1) 2. 

In the present paper we continue this study extending it to the general class 

of integrands 9)/. In addition we shall be concerned not only with minimizers of 

(P~)~ but also with the wider family of almost minimizers, which will be defined 

below. The study of our variational problems in this wider context requires new 

techniques. 

For the statement of our main results we need the following definition. 

Definition 0.2: Let f E 93~, let D be a bounded interval and let P~  stand for any 

of the variational problems involving the functional Jf  (D, .) defined above. Given 

5 > 0 and u E W2'V(D) we shall say that u is a & a p p r o x i m a t e  m i n i m i z e r  of 
problem PfD if 

(i) u satsifies the constraints and boundary conditions associated with the 
problem, and 

(ii) Jl(D;u) < infPfD + 6/[0[. 
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At this point it is convenient to introduce also the following terminology and 

notation. 

Definition 0.3: Let f E 9)I and 4 E R. 

(a) The subdifferential of the response fimction ~S at ~ will be denoted by O~f (4). 

The set 

(0.13) O ' q J ( 4 ) = { A E R :  ~ f ( s ) > ~ l ( 4 ) + A ( s - a ) ,  V s E ~ \ { 4 } }  

will be called the reduced  subdifferential  of ~f at 4. 
(b) ~ is an exposed point relative to qJ if O'pI(4) • 0. 

(c) ~ is an ex t remal  point relative to ~I if (4, ~f(~)) is extremal relative to the 
epigraph of qJ. 
(d) Given 4 E R and A E O~o S(~), put 

E l ( A )  = - = - 4 ) } .  

If ~Z is differentiable at ~ and A = (~I)'(4), put E~(~) := $I(A ). 

Clearly s is a closed interval containing ~ and Proposition 0.1 implies that 
this interval is bounded. If A E 0'~l(~), then the interval reduces to one point. 
Note that, by Proposition 0.1, for every real A there exists 4 such that A E OqJ(~). 

Our first main result concerns the uniform boundedness of approximate mini- 
mizers. 

THEOREM I: Let f E 9)I. For every A E R and every two positive numbers (~, T 

there exists a number C = CS(A; 6, ~') such that the following statement holds. 

Let v E W2'~(O,T), ~ = (V)(o,T) and A E 0~S (4). If T > Z and v satisfies 

(0.14) Jr(0, T; v) _< ~O/T(() + 3/T, 

i.e. v is a fi-approximate minimizer of (P~o,T)) C then 

(0.15) I l v l l c i i O , T ]  -< C/(A; 6,~-) and sup I I ( ( s , s  + 1);v) _< C$(A; 6, T). 
0<s<T-I 

Remark: For integrands f of the form (0.5), this result was established in [8] 

with respect to minimizers of (P(S0,T))C In that case it was shown that, for every 

compact set K, the bound C can be chosen independently of ~ = @)(0,T) for 

 EK. 

Our second result concerns the uniform distribution of mass and energy of 

approximate minimizers in sufficiently large intervals. 
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THEOREM II: Suppose that f E fOl and A E R. Then, given two positive numbers 

e, ~, there exists L = LI(A; e, 5) > 0 such that the following statement holds. 

Let v E W2"Y(0, T), ( = (v)i0,r) and A E O~I((). If v satisfies (0.14) and 

T > L, then 

(0.16) dist((v)D,s <__ e, dist(,ff (D;v) , : ] ($ i (A))  <_ c, 

for every interval D C (0, T) such that [D[ >_ L. In particular, if ~ is an exposed 

and v is a &approximate minimizer of (P~).T))~, then point 

(0.17) 

Remark: For integrands f of tile form (0.5), this result was established in [9] 
S with respect to minimizers of (P(o,T))~" In that case it was shown that, for 

every compact interval K such that infK(f( ' ,() ,0) - ~S) > 0, L can be chosen 

independently of ~ = (V)(O,T) for ( E K. 

Our third result provides a more precise estimate for a related energy flmc- 

tional. 

THEOREM III: Assume f E 93l and A E R. Then, given T > 0 and ~ _> 0, there 

exists C = CI(A; T, 5) > 0 such that the following statement holds. 

Let v E W2"r(O,T), ~ = (U)(O,T) and A E O~l(~). If v satisfies (0.14) and 

T >_ r, then 

(0.18) ](JS(D;v) - A<V>D) - (~S(() _ A~)[ <_ C/[D[, 

for every interval D C (0, T). In particular, for every ~ E R and A E O~of (~), 

(0.19) I~ST(~) -- ~S(r _< CS(~; T, O)/T. 

Remark: For integrands f of the form (0.5), inequality (0.19) was established 

in [9]. In that case it was shown that, for every compact interval K such that 

infK(f(-,  0, 0) -- ~ l )  is positive, C S can be chosen independently of ~ in K. 

The plan of the paper is as follows. In section 1 we establish the continu- 

ity of the response functions (~ ,T , f )  ~ TST(() , ( x , y , T , f )  ~-~ ~ST(x,y ) and 

( ( , x , y , T , f )  ~ ~S(~,x ,y)  and some related boundedness results. In addition 

we show that they are Lipschitz continuous with respect to ~ ,x ,y  and Hhlder 

continuous with respect to T, uniformly with respect to f in appropriate subsets 

of 9)I. Ill section 2 we present some background results and establish the existence 
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of periodic minimizers of problem (p I ) (  whenever ~ is an extremal point of y / .  

Section 3 is devoted to the proof of Theorem I. In section 4 we prove Theorems II 
{p f  ~x,y and III. In addit ion we show tha t  Theorems I III extend to problems t (0,T)J 

and { P I  ~ x'Y ~, (0,T)]~ " 

1. C o n t i n u i t y  o f  r e s p o n s e  f u n c t i o n s  in b o u n d e d  i n t e r v a l s  

In this section we establish Lipschitz continuity of response functions and uniform 

boundedness  results for families of minimizers in bounded intervals. 

We star t  with some notation. Given f 6 9~, T > 0, ~ 6 R and x , y  ElI(  2 

let $IT(~) (resp. SIT(X, y), SIT(~,x, y)) denote the set of minimizers of problem 

(P(o,T))~ (resp. (P{o,T)) x'y, (P(o,T))~'Y). Further,  put  

(1.1) A1/(~,T) = ~IT(~), AI2(x,Y, T) = ftfT(x,Y), AI3(~,z,Y, T) = ~5/T([; x, Y) �9 

Finally let E1 = ~, E2 = II~ 2 x ]R 2 , E3 -- IR x R 2 x R 2 so that  Ai is a function on 

Ei • (0, 00). 
The  following is the main result of this section: 

THEOREM 1.1: Let A[, i = 1,2,3 be as in (1.1). Let D C (O, oc) be a compact 
interval and let Ki be a compact subset of Ei, i -- 1,2,3.  Then: 

(i) Suppose that .To C ~ is uniformly bounded in compact sets. Then the set 
SIT(z) is bounded in W2"Y(0, T)  by a constant independent o f f  6 jro, T E 
D, z E K i  (i = 1,2,3) .  

(ii) For every f e flJl, the function ( z ,T , f )  ~-~ A f ( z ,T )  is continuous on 
Ei • (0, oo) x 9~. In addition the function is uniformly continuous on 
Ki x D x jr, for any family of functions jr C frIt which satisfies condition 
(0.9)(iv) uniformly, i.e., 3M C C[O, o~) such that 

(1.2) If(x)] + IVf(x)l _< M(Ixll + Ix2l)(1 + Ix3V), Vx �9 R 3, Vf �9 jr .  

(iii) Let jr be as in (ii). Then there exists a constant M~ = M~(D,K~,jr) such 

that, for every f �9 jr ,  

(1.3) h[ ( z ,T )  - h{(z ' ,T ' )  <_ Mi(Iz - z'[ + IT - T'I1/~'), 

VT, T '  E [r, ~'], z, z' C K~, 

where 1/3' + 1/3'' -- 1 with 3" as in the definition ofg)I (see (0.9)). 

The  proof  is based on several lemmas. 
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LEMMA 1.2: Let D, Ki, ~o and.~ be as in the statement of the theorem. Then: 

(i) The set SfT(z) is bounded in W2,v(0,T) by a constant independent o f f  �9 
~'o, T �9 D, z �9 K~ (i = 1, 2, 3). (ii) There exists a constant Mf = Mf(D, Ki, ~) 
such that, for i = 1, 2, 3, 

I A f ( z , T ) -  A{(z' ,T)i <_ M ; ] z -  z' I, VT E D, z,z '  �9 K~, f �9 iT. (1.4) 

In some special cases, the continuity of Af (., T) (but not the Lipschitz property) 

was proved in [7] and [8]. Another related result was obtained in [10]. Our proof, 

given in Appendix A, employs an idea of [8, Lemma 1.3]. 

LEMMA 1.3: Under the same assumptions as before, there exists a constant M* 
depending only on D, K~, iT such that, for i = 1, 2, 3, 

(1.5) A((z, T 1 ) - A f ( z ,  T2) <_M*[T1-T2[ 1/'r', V T I , T 2 e D ,  z � 9  f E.T. 

Proof." To fix ideas we shall prove (1.5) for i = 3. The proof is the same in the 

other two cases. In what follows c0,c l , . . ,  denote constants depending only on 

D, K3,~'. In particular we denote by co a bound of STf(z) in CI[0, T] which, in 

view of Lemma 1.2, can be chosen to be independent of z �9  T �9 D~ f �9 ~-. 

Suppose that T1 < T2. Let v �9 S f ( z ) ,  z -- (4, x,Y) E K3. Let V be the 

extension of v to [0, T2] which is linear in [T~, T2] and satisfies X~ (T~) -- X~ (T~) -- 

y. Put  ~ = Xv(T2), ( =  (V)(0,T2) and 2 ---- (( ,x,~).  Then ~ �9 W2'~(0, T2) and 

(1.6) A3f(2, T2)~__ ~---~lf(O, T2,~))_~ T~I A3f(z, T1 ) , 1 . 2  --~ ~---~If(T1,T2, ~)). 
Since ~ restricted to IT1, T2] depends only on y, 

1 [IS(T:,T, o)] < e : ( T ,  - (1.7) ~ , _ 

where c: depends only on K3, ~-. By 

Aa/(z, T2)_<ANY(2, T2) 

(1.8) <h3f(z, Tl) 

_<A3f(z, T1) 

T1), l y - ~ I + I ~ - ~ I ~ c l ( T 2 - T 1 ) ,  

(1.6), (1.7) and Lemma 1.200, 

+ Ma[z - 2] 

+ M31z - 31 + cl(T~ - T1) 

+c2(T2 -T1) .  

Let w �9 STf (z) and put y' = X~(TI), 4' = (w>(0,T1) and z' = (~' ,x,y') .  In 
view of Lemma 1.2(i) there exists a constant c2 (independent of T1, T2, w) such 

that 

( 1 . 9 )  - + -  (T2)l < e 2 ( T 2  - r l )  
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Iw'(T1) - w'(T2)l ~ Iw"(s)l ds ~(T2 - T1)~/~' ( I~"(~)1 ~ d~) 1/~ 
1 

(1.10) <_c2(T2 - -  T 1 )  1/~' '  . 

Choose N > 0 sufficiently large so that 

[bl[ _< co, [b2[ <_ Co, b3 >__ N ~ f(bl,b2,b3) > O, 

Let X be a function on (0,T2) defined by: 

x ( t ) = 0  if w" ( t )_>N and x ( t ) = l  

Put  

n 1 = x(t) f (w,  w', w") ds, .42 = 
1 

v f c ~ .  

otherwise. 

(1 - x(t)) f (w,  w', w") ds. 

Then, As > 0 and there exists a positive constant c3 such that 

~ w") (1.11) A = f (w,  w', ds >_ A1 >_ -c3(T2 - T1). 
1 

By (1.9), (1.10) and Lemma 1.2(ii), there exists a constant c4 such that 

(1.12) AIa(z, T1) - AIa(z',T1 ) <_ M a l z ' -  zl <_ c4(T2 - TI) 1/~'. 

By (1.11), 

A3f(z"T1) = ~---1 I f (O'Tl 'w)  -Tl<l (lf(O'T2'w) + c3(T2 - T 1 ) )  

(1.13) _<A3f(z, T2) + c~3(T2 - T1). 

By (1.12) and (1.13), there exists a constant c5 such that 

(1.14) A3f(z, T1) _~ A3f(z, T:) + c5(T2 - T1) 1/'~'. 

Finally, (1.8) and (1.14) imply (1.5) for i -- 3. | 

Proof of Theorem 1.1: Statements (i) and (iii) follow immediately from Lemmas 

1.2 and 1.3. Therefore it remains to prove (ii). The following fact is a consequence 

of [10, Lemma 2.7] and statement (i) above: 
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z EEi ,  T E (0, oo). For every c > 0 there exist positive 

A { ( z , T )  - A~(,,T) < ~, Vf C Eg(N,5) = {f E Eft: (f ,g)  G E(N, 5)}, 

with E(N, 5) as in (0. 7). 
In addition, from the proof of [10, Lemma 2.7], it is easy to see that N, 5 can be 

chosen independently of g, z, T for g E U, z C Ki, T E D. Consequently, for 

every z E Ei, T C (0, oc), the function f ~ A{(z,T) is continuous. ~hrther- 

more, this function is uniformly continuous at elements g C 9 r.  These facts and 

statement (iii) imply (ii). | 

2. Aux i l i a ry  resu l t s  

We start with some notation and background results. We assume throughout 

that f is a function in 9)I. 
(a) The set of minimizers of (BY) (resp. (pI)() will be denoted by S(f)  (resp. 

S(~;f)) .  
The set of periodic solutions of problem (PI) (resp. (PI)~) will be denoted 

by S( f )  (resp. ,~(~; f)) .  If u E S(f ) ,  its minimal period will be denoted by T(u). 

In general S(~; f )  may be empty, but if ~ is an exposed point S(~; f )  ~ 0. 

(b) For A C ~, put f;~(u,u',u") = f (u,u ' ,u")-Au.  Then Jf~(n;u) = g f (D;u ) -  

(e) In view of the convexity of ~f  (see Proposition 0.t) it is easy to verify that 

(2.1) 
,:~ = ~ : ( ~ )  - ~,  
s(~;/) c s(A), 
s(~; f) = S(fx), 

In particular #f = inf ~I. In addition, 

v,~ c a::(~), v~ c R, 
v), e o~:(~), v~ c R, 

(2.2) S ( A )  = U { s ( 5 ; / ) :  A E O~Y(5)}, VA CIR. 

(d) Applying the method of mixtures of [4, sect. 2], it is not difficult to see that 

(2.3) # /=in f (P: )  = inf(P+S), 

~/(~) = in f (P I )~  = inf(P+f)C 

(e) Suppose that u E W}o'~(~+ ) M WI'~(F~_). We shall say that u is c -op t ima l  

relative to f if, for every bounded interval D C ]iCq_, u is a minimizer of (PD/)='y, 
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where x, y are the values of Xu at the end points of D. By [10, Lemma 2.6] 

such a function is necessarily a minimizer of (P+f). However, if the boundedness 

assumption is dropped, this conclusion may not remain valid. 

In [7] a c-optimal minimizer was called a 'minimal energy configuration'. The 

concept was previously used in [1], with respect to a discrete model. 

(f) The following result was established in [7, sect. 4]. A discrete version was 

previously obtained in [6]. 

For every f �9 [f)I there exists a function ~r f �9 C(R 2) such that 

(2.4) ~ ( x ,  y) > T J  + ~s(x) _ ~s(y), Vx, ~ �9 ~ ,  VT > 0. 

Furthermore, for every T > 0 and every x E R 2 there exists y E ]~2 such 

that equality holds. 

(g) For D = (T1,T2) and v E W2'~(D) put 

(2.5) r:(D; v) = If(D;v) -IDI~ f + ~: (Xv(T2) )  - ~ f (Xv(T1) ) .  

F f will be called the mod i f i ed  e n e r g y  functional. By (2.4) this functional is 

non-negative. If v C Wffo'[(R+) M WI'~(]I~_), we shall say that it is f -pe r fec t  

if F f ( D ; v )  = 0 for every bounded interval D C R+. Obviously, every f-perfect 

function is a c-optimal minimizer of (P+f). 

We turn now to the main result of this section. 

THEOREM 2.1: Let f C 9)I. I f  ~ is an extremal point of the response function 

~Y, then problem (pI)~ possesses a periodic minimizer. 

Remark: If ~ is an extremal point, then either it is an exposed point, or it is an 

end point of the (non-degenerate) interval of linearity s In the first case, the 

existence of a periodic minmizer of (Pf ) r  was established in [4, Lemma 3.1]. In 

the second case, this result was stated in [4, Lemma 3.2] but the proof was not 

complete. Specifically, the proof relied on a statement (based on an argument of 

[7]) which may not be valid without some additional assumptions. The proof was 

completed in [9] for integrands of the form (0.5). Here we establish the result in 

the general case. 

The proof of the theorem is based on the following lemma. 

LEMMA 2.2: Suppose that f E 9)I and that ~o is a point such that 

(2.6) ~f(~o) < f(~o, O, 0). 
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Further suppose that there exists a sequence {(n} converging to ~o such that ~,~ 
is an exposed point relative to ~I  and ~n r ~0, for each n. Then there exists N 

such that 

(2.7) sup{~'(w): w E ,~(~; f) ,  n > N} < co. 

Proo~ Suppose that the result is not valid. By considering a subsequence if 

necessary, we may assume that {~n} is strictly monotone and that for every n 

there exists w~ e S ( ~ ;  f )  such that T(Wn) -+ co. We shall assume that { ~ }  

is monotone decreasing. The proof is similar in the case that it is monotone 

increasing. 
By (2.1) there exists An E 0~1(~) such that w~ E S(f~ , ) .  To simplify the 

notation we shall write fn := f~,.  Since ~f is convex, the sequence { ~ )  is 

monotone decreasing and Proposition 0.1 implies that it is bounded. Clearly its 

limit A0 belongs to 0~f(~0). In fact A0 is the one-sided (right) derivative of ~f  

at ~o. 
We propose to show that 

(2.8) Vp > 0, 3~E [~0 -P,~0]:  99S(~) = f(~,0,O). 

Obviously this contradicts (2.6). 

By assumption f E fffl(a, ~, 7, a). Clearly there exists b C R 4 such that f~ E 

ff2(c~,/~,%b), n = 0 ,1 ,2 , . . .  and f,~ --+ f0 := f),o in this space. Consequently, 

the argument used in the proof of [10, Prop. 2.3] shows that 

(2.9) sup } lwnlIwl.~(~) <_ M < oo. 
n 

Since w~ E 8(f~) ,  it follows that w~ is c -op t ima l  relative to fn. This means 

that, for every bounded interval D = (T1,7'2) C ]ir 

(2.10) gf~(D, wn) ^S~ = #ID[(Xw~(TI), X~(T2)) .  

Clearly, (0.9)(iv) holds uniformly in ~" = {f~}. Therefore, by Theorem 1.1(i), 

(2.9) and (2.10) it follows that, for every T > 0, there exists a constant c(T) 
depending continuously on T such that 

(2.11) Ilwnllw  (n) ___ c(T), V D =  ( s , s + T )  C R + ,  n =  1 , 2 , . . . .  

If w,~ is a constant, then its value is G and ~ I ( ~ )  = f(~n,0,0).  Therefore 

(2.6) implies that for sufficiently large n, w,~ is not a constant. Without loss of 
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generality we assume that wn(0) = infR w~ < {n for all n. Put  T~ = r(w,~) (=the 

minimal period of wn). By [10, Lemma 3.1] there exists Tn E (0, r(wn)) such that  

w~ is strictly increasing in (0, ~n) and strictly decreasing in (~n, r(w~)). Consider 

the interval 

K~ -- {t E [0, Tn]: wn(t) > ~ - p}, 

and put c~ = IK,d/'r,~. Note that  

~n = (w~)(o,~-.) <__ Mcn + (~n - p)(1 - c,~), 

which implies that l iminfcn > 0. Therefore, since T(W~) + 0% it follows that 

IKnt -+ c~. Let Kn = [~,~,n~]. Then either {~n - n~} or {n* - ~n} or both 

are unbounded. In the remaining part of the proof we assume that {r - ~ }  is 

unbounded. The same argument works if {n* - ~ }  is unbounded. 

By considering a subsequence if necessary, we may assume that h,~ = r - nn --+ 

oo. Put  

v~(t) = w~(t + n~), Vt_>0. 

The boundedness of {w~} (see (2.11)) and standard compactness results imply 

that  there exists a subsequence of {v~} which converges in C~(D) and weakly 

in W2'~(D), for every bounded interval D C R+. We shall assume that the full 

sequence {v~} converges in this sense and denote its limit by v. By the weak 

lower semi-continuity of the functional If~ .) (see [2]) it follows that 

(2.12) If~ D; v) <<_ liminf If~ v=) = liminf I l"(  D; vn), 
n "-+ O 0  n - '+  O 0  

for every bounded interval D C IR+. Put  x = Xv(T1), y = Xv(T2) where T1,T2 
are the end points of D. The equi-continuity of the sequence of response functions 

{/2/T~}n~__l together with (2.10) imply that 

In addition, 

l i ra  (JI"(D, v,~) -/~(~l(x,y)) = 0. 

& m  y/ = y/. 

This is an immediate consequence of the uniform boundedness of minimizers of 

the sequence of problems (PD/~)x'y, n = 1, 2 , . . .  (see Theorem 1.1(i)). Hence 

lim gl"(D, vn) = f~;l(x,y),  
r~ --+ o o  
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and consequently, by (2.12), 

(2.13) Jfo(D; v) = l i r a  J f ' ( D ;  v~) =/2( ;  I (x, y). 

Thus v is c-optimal relative to/Co. Since vm n = 1, 2 , . . . ,  is monotone increasing 

in (0, hn) and h ,  ~ co, it follows that v is non-decreasing in R+. As v is bounded, 

it follows that  it has a limit at +0% 

(2.14) r / := lim v(t) >_ 4o - P. 
t---~ oo 

Furthermore, we claim that 

(2.15) lim v'(t) = O. 
t--+0 

To verify this claim, let T > 0 and put z,( t)  = v(n + t), t E (O,T). Since 

{zn} is bounded in CI[0,T] we conclude (by the same argument that  was used 

in proving (2.11)) that  {zn} is bounded in W2,~(O,T). Therefore a subsequence 

{z,~ k } converges weakly in this space to a function z. Clearly this function has the 

constant value 7. Therefore zn ~ z weakly in W 2'~ (0, T) and hence in C 1 [0, T]. 

This implies (2.15). 

Since v is a minimizer of (p+]o) and (v} = rl, it follows that it is also a minimizer 

of (P+f)n and 

(2.16) #fo : ~f(77) _ Aor/" 

We claim that  

(2.17) ~/(r/) = Jf+(v) = f(v,  0,0). 

By [10, Prop. 2.3], since v is c-optimal relative to fo, there exists a constant co 

such that  

C0 
(2.18) [J/~ - ttl~ < T-~' 

for every bounded interval D. Therefore, by [10, Lemma 2.5], there exists an 

fo-perfect minimizer u such that 

{(u,u')(t): t ~ ~+} C_ a(v) = {(7,0)}. 

(Here, as in [101, f~(v) denotes the limit set of (v,v').) Thus u is the constant 

function with value rl. Since it is a minimizer of (p+/0), we conclude that 

= fo( ,7 ,  o, o)  = f ( , 7 ,  o, o)  - 
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This fact and (2.16) imply (2.17). 

By (2.2), A0 e 0~o/(r/). Since {An} is strictly decreasing to A0, which is the 

one-sided (right) derivative of ~o f at r it follows that 7/_< r This fact together 

with (2.14) and (2.17) yield (2.8) and the proof is complete. | 

Proof of Theorem 2.1: If ~ is an exposed point, the existence of a periodic 

minimizer of (PI)r is known (see [4]). Therefore we assume that ~ is not an 

exposed point. Since it is an extremal point, it follows that ~ is an end point 

of the (non-degenerate) interval of linearity E~ (~) and that qJ is differentiable 

at ~. As in the proof of [4, Lemma 3.2], it can be shown that in this case 

there exists a sequence {r with the properties mentioned in Lemma 2.2. If 

qoY(~) = f(~, 0, 0), then of course the constant function with value ~ is a periodic 

minimizer. Therefore we may assume that (2.6) holds. Let Wn E S(~n; f)  and 

An, n = 1 ,2 , . . .  be as in the proof of Lemma 2.2 with An -4 A0 = (qo/)'(~). 

The lemma implies that the sequence {T(Wn)} is bounded and we may assume 

that  it converges, say to TO. As shown in the proof of the lemma, the sequence 

{wn} is uniformly bounded in Ci(R) and in Wt2o'[(•). Therefore there exists a 

subsequence which converges uniformly on every compact subset, and weakly in 

Wt2o'[ (R) to a periodic function w with period To. It follows that w is a minimizer 

of problem (pfxo) and that 

1 fo ~'~ 

Thus w is a minimizer of problem ( P I ) c  I 

3. Uniform boundedness  of  approximate  minimizers  

In this section we prove Theorem I. Its proof is based on several lemmas. 

LEMMA 3.1 : Assume that f E 92~ and ~, T are positive numbers. Then there ex- 

ists a number M = M ( f  , ~', 5) such that, for every T >_ T and every 6-approximate 

minimizer v of ( P/O,T)), 

(3.1) [IVIIc1Eo,T 1 <_M and sup I / ( ( s , s + l ) ; v ) < _ M .  
0 < s < T - 1  

Proof." The lemma can be established by essentially the same argument as in 

the proof of Lemma 2.2 of [8]. For the convenience of the reader we present the 

proof here. 
Without loss of generality we may assume that T > 1. Indeed for T E IT, 1], 

(3.1) follows from the coercivity condition (0.11). Put  T - n + b, where n is an 
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integer and 0 < b < 1. Consider the partition of (0, T) into subintervals {Kj}~' 

where Kj  = [j , j  + 1) i f j  < n -  1 and K~_l = I n -  1,n + b]. 

Let v be a 6-approximate minimizer: 

(3.2) If((0,  T);v)  <_ TpfT + 6. 

Put  T(j)  = j for j = 0 , . . .  , n - -  1 and T(n) = T.  Choose a positive number Ro 

such that,  for any interval D with 1 < IDI < 2, 

(3.3) u C W2"~(D),  sup ]X~,[ >_ Ro ~ I I ( D ;  u) > I I ( D ,  O) + 1. 
i) 

The existence of such a number R0 is guaranteed by the coercivity condition 

(0.11). Put  

(3.4) m o  = sup{lfJT(x,y)[: 1 < T < 2, Ix I < Ro, lY[ < Ro}. 

Let Rl be a positive number such that, for any interval D with 1 _< IDI <_ 2, 

(3.5) u E W 2 ' - t ( D ) ,  s u p ] X , , l k R l ~ I f ( D ; u ) > _ 2 ( m o + b o ) + 6 + l ,  
D 

where b0 is the constant involved in the coercivity condition (0.11). 

Supposc that there exists j such that 

(3.6) sup }X.[ _> R,.  
Kj 

We shall show that this leads to a contradiction. Let j l ,  j2 be two integers such 

that 0 < j l  _< j <_ j2 <_ n, supK ' IXvl >_ Ro for j l  <_ i <_ j2, and D = [r(j l) ,T(j2)] 
is the maximal interval satisfying these conditions. Put  [9 = ( T ' ( j l ) , v ' ( j 2 ) ) ,  

where v'(i) = m a x ( / -  1,0) and T"(i)  = r( i  + 1), i < n and T"(n)  = T.  
Next we associate with each point T(j), j = 0 , . . .  , n a point ~j E IR 2 as follows: 

(i) 4i = (0 ,0 ) ,  if T(j) E D, 
(ii) ( j  = X,~('r(j)), if r(j) • D. 

Let ~3 E W 2''r (0, T) be a function such that 

9 ( t )  = v ( t ) ,  

{pf  ~ (( ; , , ( ; ,+ 1 ) and ~ is a minimizer of ~. K,J 

By (3.3)-(3.5), 

vt e (o, T) ". D, 

in every interval Ki C D. 

I f ( D ;  ~) <_ I I ( D ;  v) - m l  - 2(mo + bo) - 6, 
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where ml  is the largest integer not exceeding [D[, and 

is(/); ~) _< I / ( D ; v )  - ml  - 6, 

Hence, by (3.2), 

I f  ( (O, T); ~2) <_ I f  ( (O, T); v) - 1 -  (5 < TJT -- 1. 

Obviously this is impossible. This proves the first inequality in (3.1). 

To verify the second inequality observe that ,  for every s E [0,T - 1], 

(3.7) I f ( ( s , s+ l ) ; v )  <_54-fJ1(x,y), where x=Xv(s ) ,  y=Xv(sd-1) .  

Isr. J. Math .  

~ = u ,  in [O, s] U [s + l, T]; ~ = w ,  in [s, sd-1] ,  

where w is a minimizer of (Pf ]x,y (s,s+l)J . Then  If((O,T);~) < ~fT, which is 

impossible. Now, the first inequality in (3.1) implies tha t  

sup ftYl(Xv(s),X.(s+ 1)) _< M' ,  
O<s<s+l 

where M' is a constant  which depends only on M. Therefore the second inequality 

in (3.1) (with an appropria te ly  modified constant M)  follows from (3.7). | 

LEMMA 3.2: Assume that  f E 9:R and let T > 0. Then there exists a positive 
constant C1 ---- Cl  ( f  ; T) SUCh that 

(3.8) I#fT -- #][ < Ca~T, VT > T. 

Proof'. Let v* be a periodic minimizer of ( P I ) .  Let  T* be the smallest period of 

v* such tha t  ~-* _> T. Let  T = n~-* 4- b, where n is an integer and T* < b < bl := 

2T*. Then  

(3.9) T#IT <_ II((O,T);v *) <_ T# f + c l ,  

where 
cl = I Ill ((0, bl); v*) - b# f. 

Let v be a minimizer of (P[o,T))" By Lemma 3.1 there exists a constant  M = 

M(f;  T) ( independent  of T and v) such tha t  HV[[cl[o,T] <_ M, for every T >__ T. Let  

[pl ~o,x (resp. /p l  ~y,o), whe rex  = (v,v ' ) (0)  Wl (resp. w2) be a minimizer of ~ (o,r)/ ~ (o,r)] 

Indeed if (3.7) fails for some s E [0, T -  1], then consider the function ~ given by 
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and y = ( v , v ' ) ( T ) ,  respectively. Then I f ( (O, ' r ) ;wi ) ,  i = 1,2 is bounded by a 

constant C ~ which depends only on M and ~-. Hence C' depends only on f and 

r. Further, let VT be a periodic function with period T + 2T defined as follows: 

(3.10) { = v r ( t -  

w2 (t - T - 7), 

t c 
t E [T,T + 7-], 

t E (T + T, T + 2~-]. 

Then 

(3.11) #I  <_ _ _  1 I S ( ( O , T + 2 ~ ) ; g T  ) < T # Y T + 2 C  ' 
T+2~- - T+2~- 

Finally, inequalities (3.9) and (3.11) imply (3.8). I 

COROLLARY 3.3: A s s u m e  that  f E ~ and 5, ~- are posi t ive  numbers.  Then  there 
exists  M > 0 such that, for every T > -c and v E W2'~(0, T), 

(3.1Z) 

I S ( ( O , T ) ; v ) < T p f + 5 ~ i ] V ] [ c ~ [ o , T  ] < M  and sup I S ( ( s , s + l ) ; v ) < M .  
O< s< T-1  

Proof: This is an immediate consequence of the previous two lemmas. I 

LEMMA 3.4: A s s u m e  that  f E 9)l and tat T be a posi t ive number.  Then, for 

every real A, there exists  a constant  C(A) = C ( f ,  T; A) such that  

Proof'. Let f~ be the function given by f ~ ( u , p , r )  = f ( u , p , r )  - )~u. Since 

f E g)I(a, ~, T, a), it is clear that f~ E ff)I(c~,/3, % 5') for some appropriate h'. 

Observe that, for every real [, 

Therefore the statement of the lemma is equivalent to the following: 

(3.14) ( eR ,  ~S~:~S~(()~I~ST~(()-~S~(()I<C(~)/T, V T > T .  

To simplify the notation we shall prove this statement for f rather than f~. 

Put  E = {~ : qJ(~) = ttl}. By Proposition 0.1, E is a closed bounded interval 

which may reduce to a single point. If ~ E E and there exists a periodic minimizer 

of ( P f ) c  then inequality (3.14) follows by the same reasoning as in the first part 

of the proof of Lemma 3.2. This is always the case if E consists of a single point. 
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Note tha t  for any ~ E R we have #/T < qaYT(4) �9 Hence, by Lemma 3.2, 

( 3 . 1 5 )  _ < < 

Therefore  it remains to prove tha t  there exists a constant  C such that ,  for ~ E E,  

C VTS>T. (3.16) ~ ( ~ )  < , f  + y ,  _ 

Assume tha t  E = [~1, ~2] is a non-degenerate interval. By Theorem 2.1, prob- 

lem (P])~, possesses a periodic minimizer ui for i = 1,2. Therefore  it remains 

to prove (3.16) for 4 C (41,42). For this purpose we shall construct  a function 

v e W 2'~ A C 1[0, T] such tha t  

(3.17) (V}(o,T) = 4, I f((O,T);v)  <_ T# f + C', 

where C '  is a constant  independent  of 4 and T. 

Let ~-i be the minimal period of ui subject  to the condition Ti >_ T. We may 

assume tha t  T >_ 2(7-1 +z2).  Let p = (42 -4 ) / (~2  -41 )  so tha t  P41 + (1 -P)~2 = 4- 

Finally let nl,n2 be non-negative integers such that  0 < bj := Tj - njTj <_ 2Tj 

(j  = 1, 2) and ~- < b = bl + 52. For t E [0, T], put  

u l ( t ) ,  0 < t < nlT1, 

(3.18) v(t) = w(t -- nlT1), nlT1 < t < b + nlT1, 

u 2 ( t - b - n l " r l ) ,  b+nlT1 <_t<_T, 

where w is a minimizer of (p I  ~ ~'Y with x = Xu~ (0), y = Xu~ (0) and 
t "  ( 0 , b )  J (, 

~, _ b141 + b242 
b 

Then,  (v}(0,T) = 4 and 

I f ((O,T);v)  < ( T -  b)# I + II((O,b);w) = T# I + C', 

C ' =  2(7"1 + T2)l#'fl +sup{fzs(rhx, y): Ir/I _< I 1, < s _< 2(7-1 + T2)}. 

Clearly C '  is independent  of T so that  v satisfies (3.17). This proves (3.16). II 

Proof of Theorem I: Let v be as in the s ta tement  of the theorem. Lemma 3.4 

and (0.14) imply tha t  

(3.19) J f  (O,T;v) <_ qaf (~) + (C(A) + ~)/T, VT >_ "r. 

Since (V}(O,T) = 4 and #Y~ = r - A4, it follows tha t  

(3.20) j f x  (0, T; v) <_ qo y~ (~) + (C(A) + 5)/T = #f~ + (C(A) + ~)/T, VT > T. 

Hence, by Corollary 3.3, there exists a constant M depending on f ,  A, T, 5, but  

independent  of T,  such tha t  (0.15) holds. II 
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4. U n i f o r m  d i s t r i b u t i o n  o f  e n e r g y  and  mass  

In this section we prove Theorems II and [II and discuss their extension to some 

related problems. We start with 

Proof of Theorem l ib  Let v be as in the statement of the theorem. Then v 

satisfies (3.20). Theorem I and (1.4) imply that there exists a positive constant 

C'  depending on f.x such that 

(4.1) j f~(D;v)  ~ #f~ C' 
IDi' 

for every interval D C (0, T). 

Now suppose that  T _> 4r and that D = (tl , t2) is an interval contained in 

(0, T). Put  D~ = (O, tl) and D2 = [t2,7'). Then, by (3.20) and (4.1), 

,r't"(D; v) + (ID, I + ID2[)~#" - 2C' <_ I I * ( ( O , T ) ; v )  <_ T#  f* + C(A) + 5. 

Consequently 

(4.2) I f*(D;v) <_ IDt# f:' + C" ,  

where C"  is a constant depending only on f,  6, A,T. Combining (4.1) and (4.2) 

we obtain (0.18). (Recall that under the assumptions of the theorem pf~ =: 

~f(~) - At.) The second inequality, (0.19), is a special case of (0.18). I 

For the proof of Theorem II we need an additional lemma. 

LEMMA 4.1: Assume that f E 9X and let "r,a > 0. Put  Bo = {x E ~2: Ix I < a}. 

Then there exists a positive constant A = A(f;  % a) such that 

(i) [~fT(x,y) - ~tIT{ < A/T,  VT_>r,  x, y E Bo, 
(4.3) 

(ii) [(oIT(t,x,y) -~IT(t) i  <_ A / T  ' VT>_r,  I~!<c~, x, y E  B~. 

Proof: Clearly pIT < f~iT(x,y) an,] ~iT(t) 4- ~IT(t,x,Y) �9 Therefore, in order to 

prove (i) and (ii), we only have to show that  

(4.4) /2iT(x, y) <_ #I T -k A/T,  VT >_ "r, x, y E B,,, 

and 

(4.5) (JT(t,x,Y) <_ ttiT+ A/T,  VT >_ % It! <_ a x , y  E B~,. 
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The functions T ~-~ #fT, (x, y, T) ~-~ ~IT(X, y) and ([, x, y, T) ~ 9~fT(~, x, y) are 
continuous in ]R+, ~4 x ~ and ~I 5 x ll~_, respectively (see Theorem 1.1). There- 

fore, without loss of generality, we shall assume that T >_ 4. 
p f  Let v be a minimizer of (P{o,T)) in case (i), respectively ( (0,T))~ in case (ii), 

with T > W. By Lemma 3.1 and Theorem I there exists a constant M depending 

only on f, T, ~ such that IiviIc,[O,Tl < M. Let T _ U~,~,r be defined as in (A.IO) and 

put 

9 :=v+UoT,  z,r w h e r e z = x - X v ( O ) ,  ( = y - X ~ ( T ) .  

Then X~(0) = x, X~(T) = y, (9}(0,T) = (V}(0,T) and consequently 

(4.6) fZfT(x,y)<_JI((O,T);~)<_#fT+M'/T, Vx, y e g ,  T>_T, 

and 

(4.7) 
~fT(G x, y) <_ J f ( (0 ,T) ;~)  _< ~fT(~)+ M'/T ,  V ~ E [ - a , a ] ,  x, y E  K, T k T ,  

where 

M' = /  ([f(~,~',r f(v,v',v"))[ dr. 
J[0 ,1]U[T- 1,T] 

In view of (0.9) it is easily seen that M ~ depends only on f, M, K and therefore 

only on f,  r, ~, K. I 

COROLLARY 4 . 2 :  Under the assumptions of the/emma, there exists a positive 
constant bl = ba (f; "r, a) such that 

(4.8) IP (x,y)-dl <_ bl/T, VT > T, x, y C B~. 

In addition, for every real (, there exists a constant b2 = b2(f; % a, ~) such that 

(4.9) ]~fT(GX, Y) -- ~f(~)I --< b2/T, VT >_ % x,y  e B~. 

Proof." This is an immediate consequence of Lemmas 3.2, 3.4 and 4.1. I 

Proof of Theorem Ih Let 8I (~) = [~1, ~2]. (The interval may, of course, reduce 

to a single point.) Suppose that  the first inequality in (0.16) fails. Then there 

exists a positive number e, a sequence {Tn} tending to infinity and a sequence 

{vn} such that, for each n, vn is a &approximate minimizer of problem (P~o,T~))r 
and there exists an interval Dn C (0, Tn) satisfying 

(4.10) ]D,~ I ~ o0 and bn = (V~)D~ -+ b ff [~1 - -  s -]- ([]- 
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By Theorem I, there exists a constant C = C(A;5, r; f )  such that vn satisfies 

(0.15). 
f x,, .y,, For each n, vn is a &approximate minimizer of problem (PD.)b. where 

D,~ = (Tn,l,Tn,2) and xn = X,.,,(T,,I), y,, :: X,,, (Tn,2 ). This is proved by the 

same argument as in the proof of Lemina 3.1. Since ]x,,], ]Yn[, Ibn[ < C, Lemma 

4.1 implies that there exists a positive number 5l independent of n (depending 

only oil f ,  T: 5 and C) such that v,, is a 51-approximate minimizer of problem 

(P;~)~. ,  i.e. 

(4.11) , I f(On;v,,)  <_ ~/,,(b,) ~-61/Tn, where w,~ = IOnl. 

Let un be a minimizer of problem (Ps By Theorem I the sequence {un} 

is uniformly bounded as in (0.15). As mentioned before, {v,~} is also uniformly 

bounded in this sense. Therefore we (:an apply the argument used in the first 

part of the proof of Theorem 1.1 to derive the following: 

(4.12) ICplr,~ (bn) - ~pl~,, (b)[ <_ Cllb - b,[, 

where c~ depends on the uniform bounds for {v~} and {un}, on b, 5~ and f but 

not on n. Hence, by Lemma 3.4; 

(4.13) lim ~ / ( b , )  = ~ol(b). 

Since ~o,] (b,~) _< JY(D,~;Vn), (4.11)and (4.12)imply that 

(4.14) lim J l  (Dn; v,~) == ~f  (b). 

Therefore, 

(4.15) 

with f~ as in the proof of Lemma 3.4. On the other hand, by Theorem III, 

specifically by (0.18), 

(4.16) #~(D,,;v, ,)  ~ ~I~(~). 

Thus ~ol~(b) = ~o1~(~), which implies that b e ZI(A), in contradiction to (4.10). 

This contradiction proves the first inequality in (0.16). In view of Theorem III, 

the second inequality follows from the first. | 

As a consequence of Lemma 4.1 we obtain the following extension of Theorems 

I -III. 
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THEOREM 4.3: Let f C 93t. Given A E 1~ and positive numbers ~, T, a there 

exists a number  C = CI(,~; 6, T, a) such that the following statement holds. 

Let v E W2'v(0, T),  ( -- (V)(o,T) and ~ C O~f(() .  I f T  k T and x, y E Bo, and 

if  v satisfies 

(4.17) JY (0, T; v) <_ ~ f  (~, x, y) + 5/T, 

i.e. v is a 6-approximate minimizer of I p f  ~,u then v satisfies (0.15) and ~" (O,T)]~ , 
(0.18). In addition, given e > O, there exists a number L = Lf( ,~;~,~,a)  such 

that, i f  T >_ L and v satisfies the above assumptions, then (0.16) holds. 

if v is a ~-approximate minimizer of (Pro,T)) ~'y, then it will satisfy Finally, 

(4.17) and consequently the above statements will apply to it. 

Proof: Lem ma  4.1 implies tha t  if v satisfies the conditions of the theorem, then 

it is a ~-approximate minimizer of problem (P{o,T)) C where ~ = ~ + 2A. (A will 

also depend on A, or, more precisely, on a bound for s Therefore  the s ta ted 

result follows immediately from Theorems I-III.  II 

A. Appendix  

In this appendix  we provide a proof of Lemma 1.2. 

Wi thout  loss of generality, we shall assume tha t  Z > 4, where ~ is the left end 

point  of D. By rescaling we can always reduce the situation to this case. Pu t  

G~ = K~ x D x ~'. 

For T _> 1 we have b0 <__ # f (~)  _< f (~ ,0 ,0 )  with b0 as in (0.11). Since b0 is 

independent  of f E 93I it follows tha t  {A{(~,T) : (~ ,T , f )  E K1 x D x -7"0} is 

bounded.  Therefore  s ta tement  (i) follows from the coercivity inequality (0.11). 

Let  ~j E 1K and let uj e SfT(~j) (j = 1, 2). Then  the function ua = ul + ({2 -~1)  

satisfies (Ul}(0,T) = ~2 and consequently 

J / ( (0 ,  T);~21) _> AS(~2,T). 

On the other  hand, 

J ( ( 0 , T ) ; 7 2 1 )  - Alf(~I,T) < A I ( f , T ) / T ,  

where 

(A.1) fo T A I ( f , T )  := If(ul,u'a,u'a')-  f ( u l  + (~2-~l),U'l,U'l~)l dr. 
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Hence, h l ] (~ ,  T) + A 1 / T  >_ A1/(~2, T).  Similarly, we obtain 

A{(~2,T) + A 2 ( f , T ) / T  >_ A~(~I,T) 

where 

(A.2) 

Consequently,  

L 
T 

A 2 ( f , T )  = If(u2,u'2,u'2') - f (u2 - (~2 - ~1), u,~, u,~')l dt. 

(A.3) A~((1,T)  - A1/(~2,T) <_ (A, + A,2)/T. 

By (A.1) and (0.9), if u E ST/(() is a minimizer of f (P(o,T))~ and 7? E R, 

L ~ ~") jo ~ (A.4) If(u, ~,', - f(u + ~, u', u")l dt < CoIvl (1 + lu"l ~) dt <_ C11Vl, 

where Co, C1 are constants  independent  of ( , T ,  f in 61. 

(A.3) imply (1.4) for i = 1. 

Let V C C2([0, t] x R 2) be a function such that  

This inequality and 

where V' = OV/cgt. In fact, one can construct  a function V possessing these 

properties,  such tha t  V(., x) is a polynomial of order 3 with coefficients in C~ 2 ) 

vanishing at  zero. For every x, y C R 2 and T > 9, let V T be a function on [0, T] 2:,y 

defined as follows: 

(A.6) 

{ v(t,x), 
vZ~(t) = o, 

V ( T  - t, ~1), 

O < t < l ,  

l < t < T - 1 ,  

T - I < t < T ,  

where (for y = (r l ,  r2)) /) = ( r l , - r 2 ) .  

For T > 2 we have bo <_ [~/T(x,y) <_ J f ( (O,T);VT~) ,  with b0 as in (0.11). 

Therefore  { A g ( x , y , T )  : ( x , y , T , f )  C K2 • D • .To} is bounded. As before, this 

fact and (0.11) imply s ta tement  (i) for i = 2. 

Given two pairs of points in R 2, say x l , y l  and x2,Y2, let uj be a minimizer of 

(P{o,T)) x,'~,, j = 1, 2. Pu t  

= = V T . ~l(t) u ,+VT-  ~2(t) u s -  x , y ,  x , y ,  

25 

(A.5) (V, V')(0, z) = z, (V, V')(1, z) = 0, V(t,O) =- O, 
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where ~ = x2 - x l ,  ~) = Y2 - Yl. Then  

X~l(0) = ~2, X ~  (T) = y~; 

and consequently 

JY((0, T ) ; ~ I )  >_ AI2(x2,y2,T), 

On the other  hand, for j = 1, 2, 

where 

Hence 

(A.7) 

M. MARCUS AND A. J. ZASLAVSKI 

x , 2 ( o )  = x~, X ~ ( T )  = yx, 

Jf((0,T);~22) _> Af2(xl ,yl ,T) .  

J f  ((O,T);~j) - A { ( x j , y j , T )  <_ B j ( f , T ) / T ,  

J~[O ! I !  - - !  - - I !  By(f ,  T) = If(u j, u j, uj)  - f(f~j, u j, uj) I dt. 
,1]U[T--1,T] 

AI2(xl,Yl,T) - AI2(x2,y2,T) <_ (B, §  

Isr. J. Math.  

(U)(o.T) = ~, (U,U')(O) = Z, (u,u')(T) = ~. 

Pu t  71 = Ix2 - Xll + lY2 -- YlI" AS before (see (A.4)) we obtain 

(A.s) 
Bj < Co~([IY(, zllc2Eo,ll § IlV(-, r [ (1 § lug[ ~) dt ~ Cl?], 

J[o ,llu[T-1,TI 

where co,C1 are constants independent  of x j , y j , T , f  in ~2. This implies (1.4) 

for i = 2. 

Let  U E C2([0, 1] x I~ 4) be a function such that  (for z, ~ C R 2) 

(A.9) 

(U ,U ' ) (O , z ,~ )=z ,  (U ,U ' ) (1 , z , r  U( t ,O,O)-O,  U ( t , z , ~ ) d t = O ,  

where U' = OU/Ot. One can construct  a function U satisfying these conditions 

such tha t  U = U(t, z, ~) is a fourth order polynomial  with respect to t with 

coefficients depending smoothly on z, r 

For z, ~ C R 2 and ~ E R, let uTz, i  be the function given by 

{ u(t,z,(~,0)), 0 < t < 1, 
(A.10) uTz,r  = (1 + 2/T)r h 1 < t < T - 1, 

V ( t - T + l , ( r h O ) , ~ ) ,  T - I  < t < T .  

Observe tha t  u = uT~,i C W2,oo(O,t) and 
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Therefore  

bo <_ ~IT(( ,Z , (  ) <_ JI ( (O,T) ;  U~,~,r 

Consequently,  {A3I ( ( , z , ( ,T) :  ( ( , z ,~ )  �9 K3, T �9 D, f �9 ~-0} is bounded.  As 

before, this fact and (0.11) imply s ta tement  (i) for i = 3. 

Given x l , y l , x 2 , y ~  �9 R 2 and (1,(2 �9 R let uj �9 $ l T ( ( j , x i , y j )  , j = 1,2. Pu t  

~l (t) T T with ~2- (1 ,  z = 'UlAvU~,z , ( ,  fi.2(t) = u2-Un,~,r 77 = = x 2 - x l ,  ~ = Y2 -Y l .  

With  this notat ion,  the proof  of (1.4) for i = 3 is completed as in the previous 

cases. | 
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